show Abstracthide AbstractAs the most studied type of epigenetic modifications found in many taxa, DNA methylation has been confirmed to play a crucial role in transposon silencing, transcriptional regulation and thus phenotypic variation, as well as rapid adaption to changing environments. To fully understand the methylome variation in Trichinella, here, we report 12 single-base resolution methylomes of three life stages using WGBS. By comparative epigenomics, we observe that the methylome variation in Trichinella is significantly divergent and host-related. By comparative epigenomics, we observe that the methylome variation in Trichinella is significantly divergent and host-related. By comparing DNA methylation patterns between different host classes of species, we found a fraction of parasitism-related genes under epigenetic regulation, such as G-protein-coupled receptor, DNaseII and ligand-gated chloride channel. Moreover, we also reveal associations between methylation divergence and genetic basis, including nucleotide variant and structural variation. Overall design: We report 12 single-base resolution methylomes of three life stages using WGBS